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Abstract 
Remaining committed to a joint goal in the face of many entic-
ing alternatives is challenging. Doing so while cooperating 
with others under uncertainty is even more so. Despite this, 
agents can successfully and robustly use bootstrapping to con-
verge on a joint intention from randomness under the Imagined 
We framework. We demonstrate the power of this model in a 
real-time cooperative hunting task. Additionally, we run a suite 
of model experiments to answer some of the potential chal-
lenges to converging that this model could face under imperfect 
conditions. Specifically, we ask what happens when (1) there 
are increasingly many equivalent choices? (2) I only have an 
approximate model of you? and (3) my perception is noisy? We 
show through a set of model experiments that this framework 
is robust to all three of these manipulations. 

Keywords: Theory of Mind; Bayesian inference; cooperation; 
shared agency  
 

Introduction 
How do you model an intention that lacks a mind? Or rather, 
one that exists — imperfectly — among multiple minds? In-
dividual intentions and their definition have long occupied 
analytic philosophers, generating corresponding computa-
tional models of intentions that address how humans form in-
tentions from beliefs and desires (Bratman, 1987). Despite 
the rich philosophical debate around their form, shared inten-
tions have yet to receive that same rigorous treatment. Here, 
we provide such a formalized computational account of joint 
commitment. Buoyed by this philosophy, we believe our 
model ties together the evolutionary roots of collaboration 
with its modern empirical expressions. Unsurprisingly, creat-
ing such a model requires drawing on a number of different 
fields.  

   To understand the motivation behind this model, it is im-
portant to first discuss Gilbert’s philosophy and her explicit 
definition of shared intentions. In her formulation, cooperat-
ing parties must create a joint commitment in order to share 
their intentions (Gilbert, 1999). They must intend to complete 
a task as a body. Such a commitment is not merely the sum 
of personal intentions to complete a task, but in a sense, a 
subordination of personal intentions to the shared one. This 
allows for partner regulation after shortcomings and requires 
consensus when commitments change. These consequences 
of Gilbert’s formulation provide us with concrete, testable 

predictions that have appeared to varying degrees in empiri-
cal research. 

  In contrast to Gilbert, some philosophers have taken the 
stance that individual agency provides a sufficient framework 
for collaboration (Bratman, 2013). We do not suggest such a 
framework is incompatible with human cognition, but we feel 
Gilbert’s joint commitments offered a more robust structure 
to implement. 

In addition to deep theoretical support from philosophy, 
joint commitments have empirical credence from research in 
developmental psychology. Three phenomena in particular 
emerge in the behavior of young children (<5 years old) while 
engaged in joint commitments which match predictions from 
Gilbert’s philosophy. First, when a partner breaks the com-
mitment, children attempt to re-engage (Gräfenhain, Behne, 
Carpenter, & Tomasello, 2009). This indicates cooperation, 
even at an early age, involves reciprocal expectations of and 
obligations toward one’s partner. Joint commitment can be 
thought of as an implicit social contract; thus, it is natural to 
have a mechanism for regulation, ensuring cooperation is ro-
bust. 

Second, when children break the commitment, they 
acknowledge doing so (Gräfenhain, Behne, Carpenter, & To-
masello, 2009). While engaged in an activity with a partner, 
children were more likely to offer some conspicuous sign that 
they were leaving the activity if both partner and child had 
mutually agreed to engage in the activity in the first place. 
This distinguishes merely “doing the same thing” from truly 
sharing agency. 

Third, children continue engaging in tasks until all partners 
are rewarded even when they have already received their 
share (Warneken, Chen, & Tomasello, 2006). To be clear, 
these actions went against the children’s immediate personal 
utility, but when measured jointly, contributed to the utility 
of the group. Again, commitment to the shared intention pre-
dicts that individuals ought to display such behavior.  

In the past, important studies have been done to formalize 
a shared agency model of cooperation (e.g. Grosz & Huns-
berger, 2006). More recently, a shared agency has been mod-
eled by combining Markov Decision Process (MDP) and 
Bayesian inference (Kleiman-Weiner et al., 2016). It involves 
two iterative processes: (1) forwarding planning for joint ac-
tions with MDP, and (2) Bayesian inferring the mind of the 
shared agent as inverse planning. This model can successfully 
explain human judgements of the cooperative intentions of 
agents in a Stag-hunt task (Shum et al., 2019).  



One interesting aspect of this shared agency model is that 
the super-agent shared by multiple individual agents do not 
exit in reality. Instead, collaborators imagine such a joint 
mind — an analog of Gilbert’s joint commitment — in order 
to engage in collaborative tasks. Research into social con-
tracts supports the idea that cooperators view their collabora-
tion from a “bird’s eye perspective”, where all individuals are 
reasoned about as a whole (Carpenter, Tomasello, & Striano, 
2005). By modeling a controller with this perspective, the 
Bayesian shared agency model offers a valid structure for 
shared agency in human collaboration that addresses the re-
ality that human minds are private. Here we call this model 
“Imagined We”, to highlight the fact the shared supper-agent 
coordinating individual agents is only imagined by every 
agent in a distributed way.  

In the current study, we explore whether this “Imagined 
We” model is sufficient to enable a joint commitment to a 
goal persistently overtime when agents are facing the temp-
tations of pursing many other alternative goals, similar to the 
challenges that young children must fact in developmental 
studies. 

Cooperative Hunting Task 
To test this model, we adapt a previously developed non-co-
operative hunting task (Gao, Newman, & Scholl, 2009) for 
use in a cooperative environment. This task lies at the border 
between proposed evolutionary demands for cooperation and 
empirical studies of the same, exploring a current gap be-
tween the two. That is, modern empirical studies (such as the 
developmental psychology studies discussed earlier) cannot 
easily create the conditions which theorists propose led to 
early human collaboration. We believe that computational 
modeling allows for better exploration of those conditions 
and that a hunting environment mimics the broad strokes of 
early human collaboration.  

We populate the environment (Fig. 1) with two hunters 
(also referred to as wolves) and at least two hunting targets 
(also referred to as sheep). Wolves aim to successfully catch 
the sheep while sheep aim to avoid the wolves. Agents in the 
environment can take one of nine actions at a given time-step 
{move in any of the four cardinal directions or the four diag-
onal directions or stay in place} in order to achieve their re-
spective goals. The sheep move faster than the wolves, which 
requires wolves to collaborate by persistently chasing a single 
target. However, they have no predetermined target. Instead, 
they must come to a collective decision about which sheep to 
prioritize, which is accomplished using our model of shared 
agency. 

In this task, wolves do not possess a mechanism for ex-
plicit communication. This is motivated by a prominent the-
ory on the evolutionary origins of communication. It is  

 

  
Figure 1: Cooperative Hunting Task. 
 

believed that communication may only emerge in an envi-
ronment where collaboration already exists (Tomasello, 
2010).Otherwise, there is no adaptive advantage for devel-
oping a method of communication. Thus, any viable model 
of collaboration must first succeed in a scenario that lacks 
communication, and we have built our collective hunting 
task on that assumption.  

Task performance is evaluated through achieved rewards. 
The wolves receive a joint reward (+1) upon the successful 
capture of either sheep. Each wolf also incurs a small nega-
tive reward (-0.01) at every time step to encourage faster 
chasing. Accumulated reward at the end of each trial is used 
as a dependent measure of the model’s performance. 

Though outside the aim of this paper, the psychophysics of 
perceiving non-cooperative chasing has been systematically 
studied in the field of perceived animacy (Gao, Newman, & 
Scholl, 2009; Gao, Scholl, & McCarthy, 2012). While we 
only report modeling results of this cooperative chasing task 
here, we are confident that this task can inspire future psy-
chophysics work beyond this model.  

Demos of our task and model can be found at: 
https://www.youtube.com/playlist?list=PL7v_qAmAikjzYia
-dL0bPB3FCSerqTyC6 

Bootstrapping Imagined We Framework  
Here, we explain a precise formulation of the Imagined We 
model, including its computational foundation and its ap-
proach to shared agency. The overall Bayesian inference 
structures follows Kleiman-Weiner et al., (2016). The pri-
mary question our model addresses is how shared agency can 
emerge and be maintained in human collaboration despite a 
changing environment and without explicit communication.  

The shared agency model builds on top of Theory of Mind 
(ToM) for individual agents. First, we explore previous work 
using ToM to model individual action planning and inference. 
Using that as a foundation, we introduce the Imagined We 
super agent in order to accommodate collaboration. This Im-
agined We is a reflection of joint commitment that allows the 
wolves to “espous[e] a goal as a body” (Gilbert, 2013). Of 
course, because this model lacks explicit communication, the 
wolves cannot “speak” to each other to create a single, unified 



version of this agent. Moreover, even agents that could com-
municate would find that signaling inaccuracies prevent them 
from creating that unified super-agent instantly.    

Instead, here we adopt a bootstrapping method wherein 
successive inference creates distinct super agents, unique to 
each individual agent, that converge over time to the same 
values. This method creates the Imagined We, which we will 
define more rigorously below. 

Theory of Mind 
The computational foundation of the model builds on ToM 
modeling work. ToM uses social reasoning to characterize 
the mind via a set of mental states — beliefs, desires, and 
intentions. These latent states define the ontology of mind. 
Beliefs are the informational states of the mind, desires are 
the motivational states of the mind, and intentions are the de-
liberative states of the mind (Bratman, 1987). For example, 
someone walks by a $20 bill on the ground without picking it 
up. This can be explained in terms of your mental states: you 
didn't see it (beliefs), you didn't want it (desires), or you 
wanted it but were already committed to something else and 
didn't have the time to stop (intentions). This enumerative ap-
proach to mental states allows for computational accounts of 
action planning. 

Action planning using ToM follows the “principle of ra-
tionality.” Agents are assumed to plan actions that maximize 
their utility while minimizing their costs, all with respect to 
their underlying mental states. Agents select an action in a 
manner equivalent to sampling their available actions from a 
soft-max function typically used for approximately rational 
decision making, shown in Eq. 1. The parameter β controls 
how rational we believe the agent to be. 

 
𝑃(𝐴𝑐𝑡𝑖𝑜𝑛|𝑀𝑖𝑛𝑑) ∝ 𝑒 [ ( , )] (1) 

 

Rationality provides a mechanism for action selection 
given the state of one's own mind, but it also provides observ-
ers a mechanism to reason about a mind given a set of actions. 
The reverse process of action selection, what is known as in-
verse planning, is an observer's Bayesian inference to figure 
out the most likely mind generating a set of observed actions 
in the environment (see Eq. 2). 

 
𝑃(𝑀𝑖𝑛𝑑|𝐴𝑐𝑡𝑖𝑜𝑛, 𝐸𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡)
∝  𝑃(𝐴𝑐𝑡𝑖𝑜𝑛|𝑀𝑖𝑛𝑑, 𝐸𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡)𝑃(𝑀𝑖𝑛𝑑|𝐸𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡)(2) 

 
This ToM inference framework has been successfully used 

to infer physical goals (Baker, Saxe, & Tenenbaum, 2009), 
social goals (Ullman et al., 2009), and joint beliefs and de-
sires (Baker, Jara-Ettinger, Saxe, & Tenenbaum, 2017) from 
observed actions. Furthermore, inverse planning models have 
also been used to show how children make inferences about 
beliefs and desires to explain a variety of their behavior (Jara-
Ettinger, Gweon, Schulz, & Tenenbaum, 2016; Jara-Ettinger, 
Floyd, Huey, Tenenbaum, & Schulz, 2019). In our model, we 
go beyond existing accounts by using ToM to model a joint 
mind.  

Multi-Agent ToM: Bootstrapping Imagined We 
Let’s presume for a moment that a truly joint mind — rather 
than the Imagined We that we propose — governed shared 
agency. This “We” would be a super agent with its own mind 
containing beliefs, desires, and intentions. Using those men-
tal states, it could rationally control the actions of agents, just 
as a person might rationally control their own hands. Its state 
and action space would simply be the joint state and action 
space produced by concatenating the individual agents’ state 
and action spaces. And assuming the “We” agent governed 
shared agency, the contents of its mental states might be in-
ferred from the actions of the jointly committed agents just as 
they could be inferred for a single agent using ToM (Klei-
man-Weiner et al., 2016; Shum et al., 2019). Now, under-
standing that no joint mind actually exists to control these 
agents, let’s consider how to construct the Imagined We.  

 
Figure 2. Imagined We Representation. 
 

While similar in many ways to a real “We” agent, the Im-
agined We (Fig. 2) presents a unique distinction from stand-
ard ToM modeling. The Imagined We is, indeed, imagined. 
In reality, there is no shared mind to infer. Instead, each col-
laborating agent infers its own version of the Imagined We 
from its actions and its partner’s actions in the shared envi-
ronment. The Imagined We exists only as an inferred distri-
bution of mental states that is unique to each collaborating 
agent.  

Since there is no ground truth of “We” to infer, all agents 
can only reach agreement through bootstrapping (Fig. 3), 
agreement being achieved when the mental states of each 
agent’s Imagined We align with the other agent’s. Essentially, 
this is the process of determining what “We” want to do by 
looking at what “We” have done. We model the convergence 
of the Imagined We with three steps of computation. The Im-
agined We is designed to generically handle different types 
of uncertainty in latent mental states; however, in this collec-
tive hunting task, we only face uncertainty in joint intentions: 
which sheep is the joint goal.  

 



 
Figure 3. Bootstrapping Imagined We. The “IW” nodes rep-
resent the unique inferred distributions of mental states for 
each agent’s Imagined We. The “a” nodes are the actions 
chosen given those inferred distributions, with the solid 
nodes being the actions each agent will actually take and the 
dashed nodes being the expected actions of each agent’s 
partner. These actions are then observed by both agents and 
are used by each agent to update its Imagined We for the 
next time step. 

 
(1) Goal Sampling: Each agent simply samples one sheep 

from its own goal distribution to pursue as the goal. This 
sheep becomes its target, and the agent proceeds by expecting 
the other agent will target the same sheep. 

 
 

𝐼  ~ 𝑃(𝐼𝑊 ) (3) 
 
(2) Planning: Given a goal, each agent forms a plan of how 

all agents should pursue that goal rationally. The output of 
this planning process includes its own action to take, as well 
as an expectation of other agents’ actions. This is essentially 
a centralized planning process. 

We implemented this rational planning by combining on-
line model-based simulation and off-line deep-reinforcement 
training, a framework inspired by Alpha-zero (Silver et al., 
2018). Known as Monte Carlo Tree Search, the model-based 
simulation involves agents making predictions several time-
steps in the future given their knowledge of the other agents’ 
intentions. At every time step, the agent balances choosing 
actions it currently believes are the most rewarding and 
choosing actions that have gone unexplored. In the figure de-
picting this simulation (Fig. 4), Combining this simulation 
with the offline learning produces a policy as output, defining 
the probability of joint actions conditioning on the current 
state 𝜋 𝑆 , , .   

Importantly, this rational planning phase does not imply 
human cognition necessarily uses the simulation and off-pol-
icy learning we utilize here. Rather, we assert that humans 
generally make ration plans, and in order to justify the ra-
tional inference of step 3, we ensure the agents act rationally 
with the planning engine described. 

(3) Inference: After taking one’s own action based on the 
policy determined in the planning phase, each agent observes 
the actions actually taken by other agents. This enables a  

 

 
Figure 4: Model-based Simulation. Two wolves (big red cir-
cles) pursuing a single sheep (big green circles) at single 
time step. The model simulates multiple futures, going sev-
eral steps into each. Smaller red and green circles indicate 
possible future locations for the agents. The line thickness 
and circle shade indicate how often a given action has been 
taken in simulation. The best action is the one taken most 
frequently. 
 

 

 
Figure 5: Convergence of Imagined We. The wolves (in red) 
initially infer that both sheep (in grey-green) are equally 
likely to be their joint goal. The exact shade of each sheep 
along the grey-green gradient represents how likely both 
wolves are to believe that a given sheep is that joint goal. In 
each successive time step, the wolves converge on the lower 
sheep, with this convergence visible in the shade change of 
that sheep as well as in the movements of the wolves  
 
Bayesian ToM inference process: conditioning on the ob-
served actions, each wolf computes the posterior probability 
of a given sheep being their joint goal.  

 
𝑃 𝐼𝑊 ( ) 𝐼𝑊 , 𝐴 , 

∝  𝑃(𝐼𝑊 )𝑃 𝐴 , 𝐼𝑊                      (4) 

 
After updating the posterior of the Imagined We mind, 

each agent goes back to step (1), sampling a new goal and 
repeating the process. In Figure 5, we show the repeated im-
plementation of these 3 computational steps as the Imagined 
We minds converge on one sheep as the chosen goal. 
 



Modeling Experiments 

Overview 
Bootstrapping an Imagined We is potentially noisy and faces 
the challenge of convergence, particularly under imperfect 
conditions and high uncertainty. Here we report three model-
ing experiments, each challenging the robustness of the Im-
agined We model in a distinctive way that is inspired by hu-
man collaborative challenges. With these tests, we hope to 
demonstrate both the robustness of this model computation-
ally and the validity of the Imagined We as a potential expla-
nation of shared agency. Due to the stochastic nature of the 
simulations, we use accumulated reward as a dependent of 
performance.  

Expt. 1: Multiple Alternative Targets 
Human collaboration often involves a choice between pursu-
ing multiple equivalent goals. Our first test introduces an in-
creasing number of alternative targets for the wolves to assess 
the model’s performance ability to handle this common real- 

 

 
Figure 6: Results of Experiment 1. 
 
world scenario. Presumably, with an increasing number of 
sheep, the two wolves might experience greater difficulty in 
choosing which sheep to pursue persistently.  

We tested how well wolves were able to cooperate using 
joint commitment in the presence of 2, 4, and 8 equivalent 
goals, with 200 trials for each condition. 
 
Results The performance for each set size condition is de-
picted in Figure 6. The number of alternative targets is not 
significant (F(2, 597) = 0.466, p = 0.628). These results re-
veal that, even in the presence of increasingly many equiva-
lent options, the Imagined We Model achieves effective co-
operative chasing. The agents converge, reaching a consen-
sus through inference about We. 

Expt. 2: Model Precision  
Another common problem for collaboration stems from im-
precise models of other agents. Collaborators do not always 
know the exact capabilities of their partners. Here we manip-
ulate the precision of each agent’s representation of the other 
agent’s action space. 

While each agent’s own action is still selected from a set 
of 9, here they use simplified models of the other agent with 

a smaller action space. A nearest neighbor approach is 
adopted to map the real action to the action perceived by the 
other agent. The set size of the perceived action space is se-
lected from 2, 3, 5, and 9 with 200 trials in each condition.  

 
𝐴ʹ =  𝑎𝑟𝑔𝑚𝑖𝑛 ‖𝐴 − 𝐴‖ ,     𝐴 ∈ 𝒜 (5) 

 

 
Figure 7: Results of Experiment 2. 

 

 
 
Figure 8: Results of Experiment 3. 
 
Results Performance as a function of perceived action preci-
sion is shown in Figure 7. One-way ANOVA results reveal a 
significant main effect of action space size (F(3, 796) = 62.91, 
p < .001). Specifically, the accumulated rewards collected by 
the agents in the 5 and 9 action space conditions are signifi-
cantly higher than in the 3 action space condition (t(398) = 
7.297, p < 0.001; t(398) = 6.320, p < 0.001), which is signif-
icantly higher than in the 2 action space condition (t(398) = 
4.233, p < 0.001).  

These results revealed that the Imagined We does not re-
quire a perfectly precise model of other agents in order to 
converge on a shared target. Cutting the perceived action 
space nearly in half does not impact performance. However, 
more simplified action representations with fewer than 5 ac-
tions do significantly reduce the model’s performance.  

Expt. 3: Noisy Action Perception 
Finally, we test the robustness of the Imagined We by intro-
ducing random noise in the agent’s perception. This condition 
mimics human perceptual errors, which are another source of 
complications in collaborative action. A Gaussian noise is 
added to each agent’s perception of the others’ actions. 



Across trials, the variance of the Gaussian noise is selected 
from 0.1, 40, 80, and 1000, with 200 trials in each condition.   

 

𝐴ʹʹ  ~ 𝑁 𝐴 , σ2 0
0 σ2  (6) 

 
 
Results Model performance as a function of perception noise 
is shown in Figure 8. One-way ANOVA results reveal a sig-
nificant main effect (F(3, 796) = 96.034 , p < .001). Specifi-
cally, the accumulated rewards collected by the agents in the 
0.1, 40, 80 noise condition are significantly higher than than 
in the 1000 noise condition (t(398) = 12.822, p < 0.001; t(398) 
= 11.895, p < 0.001, t(398) = 13.401 , p < 0.001). These re-
sults demonstrate that the Imagined We can tolerate a mod-
erate amount of perceptual noise and only suffers only with a 
large amount of noise.  

Conclusion 
Inspired by philosophical (e.g. Gilbert, 2013), developmental 
(e.g. Tomasello, 2009), and modeling (Kleiman-Weiner et 
al., 2016; Shum et al., 2019) studies of shared agency, here 
we implement an Imagined We model and test it in a multi-
agent cooperative hunting task. The most important discov-
ery is that it consistently converges under a variety of condi-
tions, as the wolves iteratively come to an agreement on 
which sheep to jointly pursue. This model is relatively robust, 
performing well with a large number of potential targets, a 
reduced perceived action space, and a moderate amount of 
perceptual noise. Our study illustrates the rich potential of 
modeling human-like cooperative intelligence based on in-
sights from developmental studies and analytic philosophy.  

One additional finding concerns the lack of explicit com-
munication in our model. In the designed task, agents had no 
method of communication other than the communication im-
plicit within their movements. The model’s success despite 
this fact emphasizes one of our underlying assumptions - that 
models of collaboration ought to be possible without commu-
nication. This lends further credence to the idea that collabo-
ration predates communication from an evolutionary per-
spective by demonstrating that, at a minimum, collaboration 
in this multi-agent model can exist without communication.  

Finally, though we chose to draw inspiration for the tech-
nical aspects of our model from the philosophy of Margaret 
Gilbert, there are other theories on shared agency. One prom-
inent theory stems from the work of Bratman (2013), who 
uses an existing single agent framework to explain human 
collaboration at the small scale. Though the developmental 
psychology research we cited earlier supports human collab-
oration through the lens of a super agent (a la the theories of 
Gilbert), we believe future research should explore alterna-
tive computational accounts of theories on cooperation as 
other candidates to explain human cognition during collabo-
ration. 
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